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We study a closed unbounded self-adjoint operator Q acting on a Hilbert space H in the framework of Metric
Abstract Elementary Classes (MAECs). We build a suitable MAEC for such a structure, prove it is R-categorical
and R-stable up to a system of perturbations. We give an explicit continuous L, ,, axiomatization for the class.
We also characterize non-splitting and show it has the same properties as non-forking in superstable first order
theories. Finally, we characterize equality, orthogonality and domination of (Galois) types in that MAEC.
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1 Introduction

This paper deals with a complex Hilbert space expanded by a unbounded closed self-adjoint operator Q, from the
point of view of Metric Abstract Elementary Classes (cf. [17]).

Previous work related to this paper can be classified into two types: work of the first type deals with the model
theory of Hilbert spaces expanded with some operators in the framework of continuous logic; work of the second
type is about the development of a notion of Abstract Elementary Class similar to Shelah’s (cf. [24]), but suitable
for analytic structures along with its further analysis.

Previous work of the first type goes back to Iovino’s doctoral thesis (cf. [19]), where he and his advisor Henson
noticed that the structure (H,0,+, (| ), A), where A is a bounded operator, is stable. In [11], Berenstein and
Buechler gave a geometric characterization of forking in those structures, when the operator is unitary, after adding
to it the projections determined by the Spectral Decomposition Theorem. Ben Ya’acov, Usvyatsov and Zadka
(cf. [9]) worked on the first order continuous logic theory of a Hilbert space with a generic automorphism, and
characterized the generic automorphisms on a Hilbert space as those whose spectrum is the unit circle. The author
and Berenstein (cf. [5]) studied the theory of the structure (H, +, 0, (| )}, U) where U is a unitary operator in the
case when the spectrum is countable. The author and Ben Ya’acov (cf. [4]), studied the case of a Hilbert space
expanded by a normal operator N. Finally, in a recently published paper, the author has dealt with non-degenerate
representations of an unital (non-commutative) C*-algebra (cf. [3]).

Concerning work of the second type: in the 1980s, Shelah defined the notion of Abstract Elementary Classes
(AEC) as a generalization of the notion of elementary classes, which is a class of models of a first order theory
[24]. Shelah’s paper generated a big trend in model theory towards the study of these classes. In order to deal
with the case of analytic structures, Hyttinen and Hirvonen defined metric abstract elementary classes in [17] as
a generalization of Shelah’s AECs to classes of metric structures (MAECs). After this, Villaveces and Zambrano
studied notions of independence and superstability for metric abstract elementary clases (MAECs) [25,26].

The main results in this paper are the following:

1. We build a MAEC associated with the structure (H, I'p) which is denoted by IC(H,rQ), where I' stands
for the distance to the graph of the operator Q.

2. We characterize (Galois) types of vectors in some structure in (g 1), in terms of spectral measures.
3. We show that Ky r o) 18 Vo-categorical and R-stable up to a system of perturbations.
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404 C. E. Argoty Pulido: Unbounded closed self-adjoint operators in Hilbert spaces

4. We characterize continuous first order elementary equivalence of structures of the type (H, I'p). Inciden-
tally, we give an alternative proof of a famous consequence of Weyl-von Neumann-Berg Theorem.

5. We give a continuous L, ,, axiomatization of the class Ky r,).

6. We characterize non-splitting in Ky r,) and we show that it has the same properties as non-forking for
superstable first order theories.

This paper is divided as follows: In § 2, we give an introduction to Spectral Theory of unbounded closed
selfadjoint operators. In § 3, we define a metric abstract elementary class associated with (H, I"Q) (denoted
by K H.Tp))- In § 4, we give a characterization of definable and algebraic closures. In § 5, we define a system
of perturbations for Ky r,), and show that the class is Ry-categorical up to the (previously defined) system of
perturbations. In § 6, we give a characterization of first order elementary equivalence and give a continuous £, .,
axiomatization of the class KC( r,). As a by product of this, we get an alternate proof of an important cosequence
of Weyl-von Neuman-Berg that states that two operators are approximately unitarily equivalent if and only if their
essential and discrete spectra coincide and the dimensions of the eigenspaces of their eigenvalues are the same.
This fact is proved by using Ny-categoricity up to the system of perturbations proved in § 5. In § 7, we prove
superstability of the MAEC IC< H.Tg)- In § 8, we define spectral independence in KC(y r o) and we show that it is
equivalent to non-splitting and has the same properties as non-forking for superstable first order theories. Finally
in § 9, we characterize domination, orthogonality of types in terms of absolute continuity and mutual singularity
between spectral measures.

2 Preliminaries: Spectral theory of a closed unbounded self-adjoint
operator

The following is a small review of spectral theory of a closed unbounded self-adjoint operator; the main sources
for this section are [15,22].

Definition 2.1 Let H be a complex Hilbert space. A linear operator on H is a function S : D(S) — H such
that D(S) is a dense vector subspace of H and for all v, w € Sand «, 8 € C, S(av + Bw) = aSv + BSw.

Definition 2.2 Let S be a linear operator on H. The operator S is called bounded if the set {||Sul| : v €
D(S), ||lv]| = 1} is bounded in C. If S is not bounded, it is called unbounded.

Definition 2.3 If S is bounded we define the norm of S by:

ISIl=" sup  [[Sull
ueD(S),|lull=1

For H a Hilbert space, we denote by B(H ) the algebra of all bounded linear operators on H such that D(S) = H.

Definition 2.4 Let R and S be linear operators on H and let « € C. Then the linear operators R + S, oS and
S~! are defined as follows:

If D(R) N D(S)isdensein H, D(R + S) := D(R) N D(S)and (R + S)v := Rv + Svforv € D(R + S).
D(RS) :={ve H|ve D(S)and Sv € D(R)}, (RS)v := R(Sv) if D(RS) is dense and v € D(RS).
Ifa=0,thena7 =0in H.If ¢ # 0, D(«S) := D(S) and («S)v := aSvifv € D(S).

If S is one-to-one and SD(S) is dense in H, D(S™!) := SD(S) and S~'v := wif w € D(S) and Sw = v.

Ll

Definition 2.5 Let S: D(S) — H be a linear operator on H. The operator S is called closed if the set
{(v, Sv) | v e D(S)}isclosedin H x H. The operator S is called closable if the closure of the set {(v, Sv) | v €
D(S)} is the graph of some operator which is called the closure of S and is denoted by S.

Definition 2.6 Let S be an operator (either bounded or unbounded), and A a complex number. Then,

1. Xis called a eigenvalue of S if the operator S — A[ is not one to one. The point spectrum of S, denoted by
0,(8), is the set of all the eigenvalues of S.
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2. X is called a continuous spectral value if the operator S — AI is one to one, the operator (S — AI)~! is
densely defined but is unbounded. The continuous spectrum of S, denoted by o.(S), is the set of all the
continuous spectral values of S.

3. M is called a residual spectral value if (S — A1) H is not dense in H. The residual spectrum of S, denoted
by o:(S), is the set of all the residual spectral values of S.

4. The spectrum of S, denoted by o (), is the union of 0,,(S), o.(S) and o,(S).

5. The resolvent set of S, denoted by o(S), is the set C\o (S).

6. If & € o(S), the resolvent operator of S at  is the operator (S — AI)~!, and is denoted by R; (S).

Definition 2.7 Given linear operators S : D(S) — H and S": D(S') — H on H, §’ is said to be an adjoint
operator of S if for every v € D(S)w € D(S'), (Sv | w) = (v|S'w).

Definition 2.8 Given a linear operator S : D(S) — H and S': D(S’) — H on H, then S’ is said to be the
adjoint operator of S, denoted S*, if §’ is maximal adjoint to S, i.e., if $” is and adjoint operator of S and S’ C §”
then §' = §”.

Definition 2.9 A linear operator Q on H is called symmetric if Q € Q*. If Q = Q*, Q is called self-adjoint.

Fact 2.10 ([15, Lemma XII.2.2]) The spectrum of a self-adjoint operator Q is real and for A € ¢o(Q), the
resolvent R;(Q) is a normal operator with R; (Q)* = R;(Q) and [|R,(Q)]l < [Im(A)].

Fact 2.11 ([22, Theorem VIII.1]) Let Q be an operator on H. Then,

1. the operator Q* is closed;
2. the operator Q is closable if and only if D(Q*) is dense in H in which case Q = Q**;

3. if Q is closable then (Q)* = Q™.

Fact 2.12 ([22, Theorem VIII.3]) Let Q be a symmetric operator on H. Then the following statements are
equivalent:

1. The operator Q is self-adjoint.
2. The operator Q is closed and Ker(Q* +iI) = {0}.
3. Ran(Q +il)=H.

Definition 2.13 A symmetric operator S is called essentially self-adjoint if its closure § is self-adjoint.

Fact 2.14 ([22, Corollary of Theorem VIIL.3]) Let Q be a symmetric operator on H. Then the following
statements are equivalent:

1. Q is essentially self-adjoint.
2. Ker(Q*+il) ={0}.
3. Ran(Q £ i) is dense.

Fact 2.15 ([20, Theorem 9.1-2]) Let Q : H — H be a closed self-adjoint operator on H. Then anumber A € R
belongs to o (Q) if and only if there exists ¢ > 0 such that for every v € D(Q), [[(Q — Al)v|l > c|lv].

Fact 2.15 was originally stated for bounded operators, but its generalization to closed unbounded self-adjoint
operators is straightforward and left to the reader. Recall that o (Q) C R by Fact 2.10.

Theorem 2.16 ([22, Spectral Theorem Multiplication Form, Theorem VIIL.4]) Let Q be self-adjoint on a
Hilbert space H with domain D(Q). Then there are a measure space (X, |v), with u finite, an unitary operator
U:H — L*(X, n), and a real function f on X which is finite a.e. so that,

1. ve D(Q) ifand only if f(-)(Uv)(-) € L*(X, ).
2. Ifg € U(D(Q)). then (UQU™'g)(x) = f(x)g(x) for x € X.

www.mlq-journal.org © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Definition 2.17 A self-adjoint operator Q different from the zero operator is called positive and we write
Q > 0,if (Qv|v) > O0forall v € H.

Theorem 2.18 (Functional Calculus Form of the Spectral Theorem [22, Theorem VIIL.5]) Let Q be a closed
unbounded self-adjoint operator on H. Then there is a unique map 1 from the bounded Borel functions on R into
B(H) such that

1. m is an algebraic *-homomorphism.

2. m is norm continuous, that is, || (h)|lg(x) < 11 ]lcc-

3. Let (hy)nen be a sequence of bounded Borel functions with h,(x) — x for each x and |h,(x)| < |x| for
all x and n. Then for any v € D(Q), lim,_, o 7w (h,)v = Qu.

4. Let (hy)nen be a sequence of bounded Borel functions. If h,, — h pointwise and if the sequence ||\h, | is
bounded, then 7w (h,) — 7 (h) strongly.

5. Ifv € H is such that Qv = v, then 7w (h)v = h()v.

6. Ifh >0, then w(h) >0

Definition 2.19 Let © be a Borel measurable subset of R. By Eq we denote the bounded operator 7 (xq)
according to Theorem 2.18.

Fact 2.20 ([22, Remark after Theorem VIIL.5]) The previously defined projections satisfy the following
properties:

For every Borel measurable Q2 C R, Eé = Eq and Ef, = Eq.
Exz=0and E(_o o) =1

If @ =U22, Q, with 2, N Q,, = @ if n # m, then Z;’il Eq, converges to Eg in the strong topology.
Eq Eq, = Eq,ng, (and therefore Eq, commutes with Eq,) for all Borel measurable 2;, 2, € R.

b

Definition 2.21 The family {Eg | Q2 C R is Borel measurable} described in Fact 2.20 is called the spectral
projection valued measure (s.p.v.m.) generated by Q.

Fact 2.22 Let X be a locally compact Hausdorff space in which every open set is a countable union of compact
sets. Let A any positive Borel measure on X such that A(K) < oo for any compact set K. Then A is regular.

Fact 2.23 ([22, Remark before Theorem VIIIL.6]) Let v € H. Then the set function such that for every Borel set
Q C R assigns the value (Equ|v) is a Borel measure. In the case when Q2 = (—o0, A), this measure is denoted
(Evlv).

Fact 2.24 (Integral Decomposition Form of the Spectral Theorem [22, Theorem VIII.6]) Let Q be a closed
unbounded self-adjoint operator on H and let /& be a (possibly unbounded) Borel measurable function on R. Then
the (possibly unbounded) operator 4 ( Q) defined as the only operator such that

[e.0]

(h(Q)v v) = / h()d(Erv | v),

—00

whenever v € D(h(Q)), with
oo
D(h(Q)) :={veh]| / (1) Pd{Esv | v) < oo).
is such that z( Q) satisfies properties 1-4 of Theorem 2.18 and if / is a bounded Borel measurable function on R,

then 4 ( Q) is exactly the operator 7 (k) described in Theorem 2.18.

Definition 2.25 The essential spectrum of a closed unbounded self adjoint operator Q, denoted by o.(Q), is
the set of complex values A such that for every bounded operator S on H and every compact operator K on H,
we have that (Q — A1)S #1 + K.

Let Q be a closed unbounded self-adjoint operator on H. Then o.(Q) € o (Q).
The next theorem is known as Weyl’s Criterion. It gives a useful tool to identify the essential spectrum:

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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Theorem 2.26 Let Q be a closed unbouned self-adjoint operator. Then, for every . € R, the following
conditions are equivalent:

1. 2 €0.(0)
2. Foreverye >0, dim(E(;_, 1) H) = 00

Proof. *“(i) = (ii)”: Assume that there is an ¢ > 0 such that £, _; ;¢ H finite dimensional. Let
1 — xo—
h(x) _ X(r—e,rte) (x)
X —A
Then £ is a bounded Borel measurable function on R. By Fact 2.18 (functional calculus), we have that
h(Q)(Q = A1) = (Q = ADh(Q) =1 — X(—cite) (Q) =T — E(1-cs40)H.
Since E(;—¢ +¢) (Q) is finite dimensional, it is compact and A ¢ o.(Q)
“(ii) =(1)”: Suppose that » & o.(Q). Then there are a bounded operator S and a compact operator K such that
S(Q—-A)=(Q—-A)S=1+K. (%)

Suppose that for some v € H, (Q — Al)v = 0. Then (I — K)v = 0 and, therefore, Kv = —v. Since K is com-
pact, this implies that Ker(Q — A1) is finite dimensional by the hypothesis, for all & > 0, x(u—¢146)(Q) is
infinite dimensional and contains Ker(Q — A1) which is finite dimensional. So, for every ¢ > 0 there exists
Ve € X(n—e,4+¢)(Q) such that |lv|| = 1 and d(v,, Ker(Q — AI)) = 1 By Theorem 2.24

1(Q = AD)vell® = ((Q = A1) (Q = M) X(r—e.pte) () (Ve 0e)

Ate Ate Ate
= / lx — A2d(E v, | ve) < / lx — A%dx < 82/ dx <2¢°
A

—& A—¢ A—e

and hence Qv, — Av, — 0 when ¢ — 0. From (*) we get:
ve + kv, = S(Que — Av,) = 0 when e — 0.

By compactness of &, there exists a sequence (v,) C {v. | € > 0} such that kv, — v when n — oo for some
v € H. It follows that v, — —v and, since ||v,| = 1, we get ||v|]| = 1. Since Q(v,) — Av, — 0 when n — oo,
we get Qv = Av, and hence:

lv, — v|| = d(v,, Ker(Q — A1) =1,
which is a contradiction. O

Definition 2.27 Let Q be a closed unbounded self-adjoint operator on H. The discrete spectrum of Q is the
set:

04(Q) :=0(Q)\oe(Q)

Definition 2.28 Let O, and Q; be closed unbounded self-adjoint operators defined on Hilbert spaces H; and
H, respectively. Then (H;, T'p,) and (H,, I'g,) are said to be spectrally equivalent (Q| ~, Q>) if both of the
following conditions hold:

L. o(Q1) =0(Q2).
2. Ue(Ql) = Ue(Q2)~
3. dim{x € H; | Q1x = Ax} =dim{x € H, | Q2x = Ax} forx € 6(Q)\oe(Q1).

Fact 2.29 ([22, Classical Weyl theorem, Example 3 of § XIII.4]) If Q is a (possibly unbounded) self-adjoint
operator and K is a compact operator on H. Then 0.(Q) = 0.(Q + K).

Fact 2.30 ([10, Weyl-Von Neumann-Berg, Corollary 2]) Let Q be a not necessarilly bounded self-adjoint
operator on a separable Hilbert space H. Then for every ¢ > 0 there exists a diagonal operator D and a compact
operator K on H such that [|[K| <eand Q = D + K.

www.mlq-journal.org © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Definition 2.31 Two unbounded closed self-adjoint operators O and Q, on a separable Hilbert spaces H,
and H, are said to be approximately unitarily equivalent if there exists a sequence of unitary operators (U, ), -«
from H, to H, such that for every n € Z,, Q> — U, QU is bounded and for all ¢ > 0, there is n, such that for
everyn > ne, Q> — U, QU || <e.

The next theorem is an important consequence of the Weyl-von Neumann-Berg Theorem. In § 6, we shall give
a model theoretic proof of it:

Fact 2.32 ([13, 11.4.4]) Suppose Q; and Q, are unbounded closed self-adjoint operators on a separable Hilbert
space H. Then Q; and Q- are approximately unitarily equivalent if and only if Q| ~, Q.

Definition 2.33 Let Q be a closed unbounded self-adjoint operator on a Hilbert space H. For A € 04(Q), letn;,
be the dimension of the eigenspace corresponding to A. We define the discrete part of H by Hy := P, coa(Q) cr.
In the same way, we define Q4 := Q[H4

Definition 2.34 Let Q be a closed unbounded self-adjoint operator on a Hilbert space H. We define the
essential part of H by H, := Hj . In the same way, we define Q. := Q| H,

Definition 2.35 Given G C H and v € H, we denote the Hilbert subspace of H generated by the elements
h(Q)v, where v € G, his abounded Borel functiononRandv € D(h(Q)) by Hs.Ifv € H, we write H, := Hy,,.
We let Q¢ := Q[ Hg and similarly Q, := Qy,. Furthermore, we write Hé- for the orthogonal complement of
Hg, Pg for the projection over Hg, and Pg. for the projection over Hp .

Definition 2.36 Given G C H and v € H, we denote by (Hg)q and (Hg ). the projections of Hg on Hy and
H. respectively.

Definition 2.37 Let v € H, the spectral measure defined by v (denoted by w,) is the finite Borel measure that
to any Borel set 2 C R assigns the (complex) number,

1o () := (x(Q)v | v)
Fact 2.38 ([15, Lemma XI1.3.1]) For v € H, the space H, >~ L*(R, u,).
Fact 2.39 ([15, Lemma XII.3.2]) There is a set G € H such that H = @, _; H,.
Corollary 2.40 There is a set G C H such that H = Hy ® @, ; H,.

3 A metric abstract elementary class defined by (H; Q)

In this section we define a metric abstract elementary class associated with a closed unbounded self-adjoint
operator Q defined on a Hilbert space (cf. Definition 3.4). We shall recall several notions related with metric
abstract elementary classes that come from [17].

Definition 3.1 An L-metric structure M, for a fixed similarity type £, consists of

(a) a closed metric space (M, d),

(b) afamily (RM) rer Of continuous functions from M"* into R, where ny is the arity of R,
(c) an indexed family (F M) rec of continuous functions on powers of M, and

(d) an indexed family (¢™).c. of distinguished elements of M.

We write this structure as

M = (Ma d7 (R/M)Reﬁv (F/M)Feﬁv (CM)CEL:)'

If M is a metric structure, dens(,M) denotes the smallest cardinal of a dense subset of M.

Definition 3.2 Let £ = (0, —, i, +, (I;)recq, || - |, To). A Hilbert space operator structure for £ is a metric
structure of only one sort:
(H,0,+,i,(I;)req, |- . To)

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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where H is a Hilbert space, Q is a closed (unbounded) self-adjoint operator on H, O is the zero vector in H,
+: H x H — H is the usual sum of vectors in H, i : H — H is the function that to any vector v € H assigns
the vector iv where i> = —1, I, : H — H is the function that sends every vector v € H to rv, where r € Q,
Il - Il : H— Risthe norm function,and I'p : H x H — Ris the function that to any v, w € H asigns the number
Iy (v, w), which is the distance of (v, w) to the graph of Q. Since Q is closed, ' (v, w) = 0 if and only if (v, w)
belongs to the graph of Q. The structure will be referred to as (H, I'p) and is a metric structure for the similarity
type L.

Lemma 3.3 Let Q| and Q; be closed unbounded self-adjoint operators defined on Hilbert spaces H, and
H, respectively. An isomorphism U : (H,,Tg,) — (Ha, Tg,) is a unitary operator of U : H — H, such that
UD(Q1) = D(Q2) and U Q1v = Q,Uv for every v € D(Qy).

Proof. “=":Suppose U is an isomorphism between (H,, I'g,) and (H», I'g,). It is clear that U must be
a linear operator. Also, we have that for every u, v € H we must have that (Uu | Uv) = (u | v) by definition of
automorphism. Therefore U must be an isometry and, therefore, it must be unitary.

On the other hand, since U is an isomorphism between (Hj, I'p,) and (H,, I'p,), for every (v, w) € H x H
we have that I'p, (v, w) = [g,(Uv, Uw). Therefore, T'g, (v, w) = 0 if and only if 'p,(Uv, Uw) = 0. So, for
every v € D(Q1), UQ1v = Q,Uv.

“<":Let U : H — H, be an unitary operator such that UD(Q;) = D(Q,) and U Qv = Q,Uv for every
v € D(Q,). Itremains to show that for every (v, w) € H x H,T'g, (v, w) =Tp,(Uv, Uw).Let (v, w) € H x H
be any pair of vectors. There exists a sequence of pairs (v,, w,).en such that for every n € N, v, € D(Q)),
wy, = Q1v, and Ty, (v, w) = im0 d[(v, w); (Vs, wy)].

By hypothesis, U is an isometry, and maps the graph of Q; into the graph of Q,;soforalln € N, Uv, € D(Q»)
and Uw, = Q»v,. We have that

lim d[(Uv, Uw); (Uv,, Uw,)] = lim d[(v, w); (vy, w,)] = Tp, (v, w).
n—0oQ n—oo

So Ty, (Uv, Uw) < T'g, (v, w). Repeating the argument for U~!, we get 'y, (v, w) < T'p,(Uv, Uw). O

Definition 3.4 A Metric Abstract Elementary Class (MAEC), on a fixed similarity type £(K), is a class K of
L(K)-metric structures provided with a partial order <y such that the following hold:

1. The class £ is closed under isomorphism:
(a) Forevery M € K and every L(K)-structure N, if M >~ N then N € K.
(b) Let Ni, N; € K and M, M, € K be such that there exists f; : Ny >~ M, (for £ = 1, 2) satisfying
fi € f>. Then N} < N, implies that M| < Mo.
2. Foral M, N € Kif M <x N then M C N.
Let M, N and M* be L(K)-structures. If M C N, M < M* and N < M*, then M < N.
4. There exists a cardinal LS(KC) > Ry + |£(K)]| such that for every M € K and for every A C M there exists
N € K such that N <x M, N 2 A and dens(N) < |A| + LS(K) (downward Lowenheim-Skolem).
5. (a) For every cardinal u and everyN e K,if (M; <x N i < p} € Kis <g-increasing and continuous
(e.,i<j=M; <xM, )thenU,qLM elCandU,qL./\/l <k N.
(b) For For every u, if {M; i <u} CKis=<g- 1ncreasmg (1 e.,i < j = M; <x M) and continuous then
U1<MM € K and for every j < u, M; <x U,_, M;

Here, | J,_, M; denotes the completion of | .

»

z<u

M, (Tarsk1 -Vaught chain).

i<p i<p

Definition 3.5 Let (H, I'p) be a structure as described in Definition 3.2. Let £ the similarity type of (H, T'p).
We define IC(H,FQ) to be the following class:

Kiury =1{(H.Tg)| (H Ty)isan L-Hilbert space operator structure and Q' ~, O}
We define the relation <y in IC(H_FQ) by:
(Hy,Tp,) <x (Ha, Tp,) if and only if H; € H, and Q; € Q>
Theorem 3.6 The class ’C(H,FQ) is a MAEC.
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Proof. Condition l(q) is clear by Lemma 3.3; conditions 1(b), 2, and 3 are clear. We consider condition 4.
and claim that LS(K) < 22 We first prove the following claim:

Claim3.7 If(H',T'¢') € K(ur,), thereisa(H",Tgr) < (H', Tg) suchthat (H",T o) € Kand |H"| < 27,

Proof. By Corollary 2.40, there is a set G’ € H’ such that H' = Hy & D, H,. Since there are at most
2% many Borel measures, there is a G” C G’ such that |G”| < 22" and for every v € G' there isa w € G” such
that ;t, = py,. Take H” = Hy @ @, H, and Q" := Q'[H".

We have that Q" is closed since H" is aclosed subset of H' and sois the graph of Q”. Then (H”,T'¢") € K(x.r,),
(H",Ty/) < (H',Ty)and |H"| <227, O

Now, let (H','p/) € K and A € H'. Let G’ be as in Corollary 2.40 and let (H”, /) be as in Claim 3.7.
Since A € Hi ® P, H,, thereisa G4 € G, with |G 4| < |A[Ro, such that A € Hy & @UeGA H).

Let H := Hi ® Doec,ucr Hy and Q" := Q' H. We have that Q" is closed since H is a closed subset of H’
and so is the graph of Q”. Then (H, Ty) € Kinry), (H, Fp) < (H',Tg), AC H and |H| < |A| + 2. This
finishes the proof of condition 4.

Finally, we consider show the Tarski-Vaught chain property. To see condition 5(a), suppose « is a regular cardinal
and (H, Ty) € Ku.r,)-Let (Hi, Tg,)i<c a<x increasing sequence such that (H;, T'p,) <x (H, ['p)foralli < k.
Then, for all i < «(H;41,Tg,,,) = (H;,To,)® (H/,Tg), where H; is a Hilbert space and Q; is a (possibly

unbounded) closed selfadjoint operator such that o4(Q}) = @ and 0.(Q}) C 0e(Q). Then U, (H:, Tp,) =
(Ho.To,) ;. (H/.Tg)). Since (H;. Tp,) <x (H.Ty), U, (H;.Tg,) <x (H.T).
Condition 5(b) is clear from the argument for condition 5(a). O

From now on, the relation < in K¢y r o) will be denoted as <.

Definition 3.8 Let (IC, <x) be a MAEC and let M, N € K be two structures. An emdedding f : M — N
such that f (M) <x N is called a K-embedding. A MAEC K has the Joint Embedding Property (JEP) if for any
M, M, € K there are N € K and a K-embeddings f : M| — N and g : M, —> N.

Theorem 3.9 The MAEC Ky r,) has the JEP.

Proof. Let(H,,Iy,),(H:,Tg,) € Kur,) Without loss of generality, we can assume that H; N H, = @.
By Corollary 2.40, there are sets G; € H; and G, € H, such that H; = Hy & @UéGl (Hy)y and H, = Hy &

@UEGZ (HZ)U'

Let

A=HoPH) &P H),

veG veGy
and
0 :=(Q\IHs) ® (@(Ql r(Hl)v)> ® (@(sz(Hz)u))
UEG[ UGGZ
then, Idy, @ D,c;, [d(n,), and Idy, © B, ., Id(n,), are respective K4 r,)-embeddings from (Hy, T'p,) and
(Hy,Tg,)to (H,Ty). O

Definition 3.10 A MAEC K has the Amalgamation Property (AP) if for any M, Ni, N> € K such that
M < Ni and M < N>, there are M’ € K and a K-embeddings f : N — M’ and g : N; — M’ such that
fN), g(N2) < M’ and fIM = g M.

Theorem 3.11 The MAEC Ky r,) has the AP.

Proof. Let (H\,Ty,), (H2,Tg,) and (H3,Tg,) € K(ur,) be such that (H,,Ty,) < (H2,Tp,) and
(Hi,Tp,) < (Hs, T'g,). By Corollary 2.40, there are sets G| € H;, G, € H, and G3 € Hj such that:

H =H; & @(Hl)u,

UEG]
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H, = Hy® P (H), & @ (Ha)..

veG, veGy
H; = Hy® P (H)), & P (Hs),.
veG, veGs
Let
Hy = Hy® @ (H)), & @ (H:), & P (Hs ).
UEG[ UEG2 U€G3
and

Q4= (Q1Hy) ® (@(er(Hl)U)> @ <®(Q2F(H2)v)> o | P(sl(H).)

UEG[ UEGZ UEG3

Then (H4’ FQ4) € IC<H’FQ> and Ide @ @UEG[ Id<Hl>v @ @UEGz Id(HZ)u’ Ide @ @UEG[ Id<Hl)v @ @UEG} Id<H3)1
are respective K r,)-embeddings from (H,, T'g,) and (H3, T'g,) to (Hy, T'g,). O

For (H,,Tp,), (H2,Tp,) and (Hs, I'p,) as in Theorem 3.11, we denote by

(Hy,To,) \/ (H3,Tg,):=(H:Vu, H3, To,04 0.)
(Hi.Tg,)

the amalgamation of (H,, T'g,) and (H3, I'p,) over (H;, I'g,) as described in Theorem 3.11.

Definition 3.12 For M, M, e K, AC M NM; and (a;)i<e S My, (bi)ica € M,, we say that
(ai)i<a and (b;)i<o have the same Galois type over A in M, and M, respectively, (gatp,,, ((@i)i<a/A) =
gatp,, ((bi)i<w/A)), if there are N'€ K and K-embeddings f: M; — N and g: M, — N such that
f(a;) = g(b;) forevery i <« and f[A = g[A = Id4, where Id, is the identity on A.

Theorem 3.13 Let v € (H], FQI)’ w e (Hz, er) and G C H; N H, such that (HG’ FQG) S IC(H,]"Q),
(Hg.Tg;) < (H1.Tg,), (Hg.Tg;) < (H2. Tg,). Then gatpy, r, y(v/G) = gatpy, r, \(w/G) if and only if
Pgv = Powand Lp,, v = P, w-

Proof. “=":Suppose gatp(H]_FQI)(v/G) = gatp(szl-Qﬁ(w/G) andletv’ := Pgivand w’ := Pgiw. Then,
by Definition 3.12, there exists (H3, I'g,) € K(u.r,) and Ky r,)-embeddings U, : (H,,T'¢,) — (H3,Tp,) and
U, : (Hy,Tp,) = (H3,Tp,) such that Ujv = U,w and U, |G = U,|G = 1dg, where Idg is the identity on
G. Since v = Pgv + Pgiv, w = Pgw + Pgrw and U, |G = U, |G = Idg, we have that U; Pgv = Pgv and
U, Pow = Pgw. Since U; and U, are embeddings, (ty = fy,v = Uu,w = Mu'-

“&" Let v/ := Pgiv and w' := Pgrw. Suppose (b, = iy, then p,, = /,LwéLz(R, Moy) = L*(R, Muy). Let
W= fhy = [y - Also, let H:=(H vy, H)® L*(R, 1) and let Q := (Q; Vo, Q2) ® My, be as in the multi-
plication form of the Spectral Theorem. Let U, : (Hy, Tp,) — (H, Q) be the Ky r ,)-embedding acting on H,;;
into H} v H: as in the AP, and acting on H,, as in Fact 2.38. Define U : (Ha, 'g,) — (H, Q) in the same way.
Then, we have completed the conditions to show that

gatP(Hl,rQ])(U/G) = 8aP(p, 1) (w/G).
O

Definition 3.14 A MAEC K is said to be homogeneous if whenever M, N € K and (a;); .« € M, (b;)ice SN
are such that foralln < wand iy, ..., i, <«

gatp v (diy, - - - @i, /D) = gatpyr(bigs - - -, bi, /D),
then we have that
gatp ()i <o /D) = gatpyr((b;)i<a/D).
Theorem 3.15 The MAEC Ky r,) is homogeneous.
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Proof. Let (H,Ty,), (H2,Tg,) € Kinry) and (v;)i<e S Hi, (w;)i<w S H be such that for all n < w
and ip,...,i,_] <O
APy, 1y ) (Vigs -+ Vi, /D) = AP, 1, ) (Wi - - - Wi, /D)

We can use Gram-Schmidt-like process to get orthonormal sequences. So, without loss of generality, we can
assume that for all i < owv; € (Hi)e, w; € (Hz)e and for every i # j <o, v; L v; and w; L w;. Fori < a, let
Wi = Wy, = [, Which agree by Theorem 3.13, since for all i < agatp(,_,hrgl)(v,-/g) = gatpy, 1, ) (Wi /D).
Also, let )

A = (H vy Hy) & P L (R, i)
and

0:=(01vs 0)aP M,
be as in the multiplication form of the Spectral Theorem. Let U, : (H;,I'g,) — (I:I, FQ) be the Ky r,)-
embedding acting on H<J- )i into Hﬁ;_ \% H(J;U )i A8 in the AP, and acting on H,,),_, as in Fact 2.38. Define

v; i)i<a i<a

Uy: (Hy, Ty,) — (H, Q) in the same way. Then we have completed the conditions to show that
gatp(H..FQl)((Ui)i<a/®) = gatp(Hz,FQZ)((wi)i<a/g)'
O
Theorem 3.16 ([17, Theorem 1.13]) Let (KC, <x) a MAEC on a similarity type L satisfying JEP, AP and
homogeneity. Let k > |L| + LS(KC), then there is MM € K such that

1. M is k-universal, i.e., for all M € K such that | M| < «, there is a K embedding f : M — IN; and
2. M is k-homogeneous, i.e., if (a; )i <ar (bi)i<a C M are such that for alln < w and iy, ...,i,—] <«

gatpoy (aiys - - -, ai, /D) = gatpen (biy, - - -, bi, /D)
then there is an automorphism f of MM such that f(a;) = b; foralli < a.
If in the previous theorem, « is a cardinal greater than the density of any structure in A that we want to study,
the structure 9 is called a monster model.

Let « be as above, and let M(R) the set of all regular Borel meaures on R whoose support is disjoint from
0,(Q). Then the structure (H,, I'5_) where

A=HioP|EPL R p)

K pneM

and

0= (CH) o P | P m,

K pneM
works as a monster model for Ky r,). This can be easily proven from the proofs of JEP, AP and homogeneity of
K(n.ro)-

Definition 3.17 Let IC be a MAEC that satisfies the JEP, AP and homogeneity. Let 9J be a monster model for
K. Then K is said to have the continuity of types property if whenever A € M and (b; ), -, is a convergent sequence
with limit b = lim,,_, o b; such that gatp(b;/A) = gatp(b,/A) for all i, j < w, then gatp(b/A) = gatp(b;/A) for
alli < w.

Theorem 3.18 The MAEC Ky r,) has the continuity of types property.
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Proof. Let G € H be small and (v;);-, € H a sequence such that lim; .., v; = v and gatp(v;/G) =
gatp(v;/G) forall i, j < w. Then by Theorem 3.13, Pgv; = Pgv; and gatp(Pgrv; /@) = gatp(Pgrv;/2) for all
i, j <w. Iflimj_ v; = v,itis clear that Pov; = Pgv for alli < w. So it is enough to prove the theorem for the
case G = O.

Suppose lim;_., v; = v and gatp(v; /@) = gatp(v,;/@) for all i, j < w. By Theorem 3.13, this means that
wi = pjforalli, j <w.Letu := u; and E C R be a Borel set. Then

(xe(Q)v | v) = (x£(Q) lim v; | lim v;) = lim (x£(Q)v; | vi)
1—>00 11— 00 11— 00
= lim w;(E) = lim u(E) = n(E).
Again by Theorem 3.13, gatp(v; /&) = gatp(v/@) forall i < w. O

In the equalities used in the proof of Theorem 3.18, we can exchange the limit with x (Q) because x(Q) is a
bounded (and therefore continuous) operator.

4 Definable and algebraic closures

In this section we give a characterization of definable and algebraic closures.

Definition 4.1 Let IC be a MAEC with JEP and AP. Let 2t be the monster model in /C and let A C 9t be a
small subset. Then the definable closure and the algebraic closure of A are the sets

dcl(A) := {m € M | for all automorphisms F of M that fix A pointwise, we have that Fm = m}
and
acl(A) := {m € 9 | the orbit under Aut(9t/A) is compact},
respectively.
Recall that Aut(99t/A) is the group of automorphisms of 9t that fix A pointwise.
Theorem 4.2 Let G C H. Then dcl(G) = Hg.

Proof. “dcl(G) € Hg":Letv & Hg.Then Pg.v # 0.Let (H',T'g) € K(p.r,) be a small structure contain-
ing v. Let (H”, T'gr) € K(p.r,) be a structure containig H' & L*(R, jup_, v,). Let w := Pgv + (1) e H".
Then gatp(v/G) = gatp(w/G), but v # w. Therefore v & dcl(G).

“Hg C dcl(G)”: Let v € G, let h be a bounded Borel function on R, let U € Aut(H, Q/G) and let (H', T'¢/)
a small structure containg G. Then, by Lemma 3.3, Uh(Q")v = h(Q")Uv = h(Q’)v, and v € dcl(G). O

HPgve

Lemma 4.3 Let v € H. If v is an eigenvector corresponding to some . € 4(Q) then v is algebraic over @.

Proof. We have that 2 € 04(Q) if and only if 1 is isolated in o (Q) with finite dimensional eigenspace
H,. So any automorphism can only send H, onto H, and the orbit of v under such automorphism can only be
compact. g

Lemma 4.4 Let v € H be such that v =Y v, where each vy is an eigenvector for some ;€ o4(Q). Then v
is algebraic over @.

Proof. Given that ||vi|]| — O when k — oo, the orbit of v under all the automorphisms is a Hilbert cube
which is compact. O

Theorem 4.5 We have that acl(@) = H,.

Proof. That acl(®) C Hy is a consequence of Lemma 4.4. For the converse, suppose v € H such that
ve 7 0. Let  be an uncountable small cardinal and let F := 6977 L*(R, 11,,). Any structure in K(n,r,) containing

G will have n different realizations of gatp(v/&). Therefore v ¢ acl(). O
Theorem 4.6 Let G C H. Then acl(G) is closed Hilbert subspace generated by the union of dcl(G) with
acl(9).
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Proof. Let E be the space acl(@) + dcl(G). We have that acl(@) C acl(G) and dcl(G) C acl(G) so
E Cacl(G).If v ¢ E, then P v # 0. Let n be an uncountable small cardinal and let F := oD, L*(R, K(piv).)-
Any structure in iy r,) containing G will have n different realizations of gatp(v/G). Therefore,
v & acl(A). O

5 Perturbations

In this section, we define a system of perturbations for 4 r,) and show that (4 1) is separably categorical up
to this system of perturbations.

Definition 5.1 Let (IC, <x) be a MAEC. A class (F,).>0 collections of bijective mappings between members
of K is said to be a system of perturbations for (IC, <) if it satisfies the following conditions:

1. If § < ¢, then Fs C F,; furthermore, Fy = (., F. and F, is exactly the collection of real isomorphisms
of structures in .

2. If f : M — N isinT,, then f is a e°-bi lipschitz mapping with respect to the metric, i.e., e *d(x, y) <

d(f(x), f(y)) <e‘d(x,y)forallx,y e M.

If f € F, then f~! €F,.

If f €eF,, g € Fs, and dom(g) = rng(f) then go f € Feys.

5. If (f;)i <o is an increasing chain of ¢-isomorphisms, i.e., f; € F,, fi : M; = Ni, M; < M1, Ni <
Ny and f; C fiq for every i < a, then there is an e-isomorphism f : |J,_,M; — |J,_,N; such that
fIM; = f;foralli < w.

bl

i<a i<a

If (F,).>0 is a system of perturbations for (/C, <x), then (IC, <, (F¢)e>0) is called a MAEC with perturbations.

Definition 5.2 Let ¢ > 0. An g-perturbation in IC(H,FQ) is an unitary operator U : H; — H, such that there
are closed unbounded selfadjoint operators O and Q» defined on H; and H, respectively, such that

1. (Hi,Tg,), (H2,Tg,) € Kin.ry)s

2. UD(Q1) = D(0Q1),

3. the operator Q; — U~' Q,U can be extended to a bounded operator on H, with norm less or equal to &,
and

4. the operator Q, — U QU ~1 can be extended to a bounded operator on H, with norm less or equal to ¢.

The class of all e-perturbations in /C(4.r,) is denoted by (]F(EH’F"))

e>0

(H,Tg)

Theorem 5.3 The tuple (K (.r,), <Ky > (Fs )e>0) is a MAEC with perturbations.

H.lg

Proof. TItems (1), (2) and (3) are clear. (4) follows from the triangle inequality. For (5), recall from the
Tarski chain condition in Theorem 3.6 that | J; _ . (H;, 'g,) = Ho @, (H/, T'o/). This with the fact that a direct
sum of ¥ bounded operators with norm less than ¢ is still a bounded operator with norm less than &. O

Definition 5.4 A MAEC with a system or perturbations (K, <x, (F).>0) is said to be Ro-categorical up to
the system of perturbations (F, )., if for all separable M;, M, € K and for all ¢ > 0, there is an f, € F, such
that f; : M — M,.

(F(HvFQ)

Theorem 5.5 The MAEC with a system of perturbations (K(u.r,), <K B )e=0) is Ro-categorical

HTlg)?
up to the system of perturbations.

Proof. Let(H;,Tg,), (H2 T'g,) € K(ur,) be separable. For each & > 0, we build a structure (H, I'g,),
an e-isomorphism V, : (Hy, Tg,) — (H;, I'p,) and an g-isomorphism W, : (H,, T'p,) — (H:, Tg,). So, V. W}
is an 2e-isomorphism between (H,I'p,) and (Ha, I'p,). This shows that K r,) is R¢-categorical up to the
system of perturbations.

Now, let us go to the construction of the V.’s: Let ¢ > 0 and let (I;)rcz+ be a family of disjoint connected
subsets of R with diameter less than &, which also cover o.(Q). Let (A )kez+ € 0(Q) be a set of inner points in
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each of the /;’s. Let (Hk’, FQL) be an Ry-dimensional structure such that Q) acts on H, as A; times the identity.
Given I, both x;, (Q1)H; and H] are separable and infinite dimensional. Therefore, there is an isomorphism:

Vsk : (Xlk(Ql)Hl’ FQITXIk(Ql)Hl) - (Hlé’ FQL)

Now, let Ay, ..., Aq, be the (finite) set of discrete spectral values (isolated finite dimensional eigenvalues) not
covered by (/i )xez+- Let Hy, be the eigenspace of A4, and let n,, be the dimension of H,,. Let Q; be the restriction
of O to Hy.

Let

(He.Tg,) @ (Hy.To,) ® @ (H/.Ty))
i=1 keZ*

and let

ne

V.= @Idm o Pvh

keZ*

Given that |x — ) 1", Md; Xingy = Dorez MeXp | < &, we get that [|Q1 — VS Q. V|| < &. So, we have completed
the proof. g

Remark 5.6 Theorem 5.5 implies that any two separable structures (Hy,T'g,), (H2,Tg,) € K(ur,) are
approximately unitarily equivalent.

6 CFO elementary equivalence and continuous L, . axiomatization

In this section we deal with continuous first order elementary equivalence for the structures of the type (H, I'g).

Lemma 6.1 For every bounded linear operator S € B(H), definable in (H,Tp), and for all v and w € H,
we have that ||Sv — w|| < (24 ||S]|)Ts(v, w) where Ts(v, w) denotes the distance to the graph of S.

Proof. Let Gg be the Hilbert subspace of H x H given by Gg:={(v,Sv) | ve
H} and let Ps be the projection H x H over Gg. If (v, Sv'):= Ps(v,w), then [g(v,w)=
d[(v', Sv), (v, w)]. So, [ISv—w]| < Ts(v,w)+d[(,SV), (v, Sv)] < Ts(v,w)+d(,v)+d(SV, Sv) 5
Ls(v, w) + Ts(v, w) + [1S1d(v', v) < 2Ts(v, w) + [SITs(v, w) = 2+ IS5 (v, w).

Lemma 6.2 For every bounded linear operator S € B(H), definable in (H, T ), the following condition holds
in (H, FQ)

v, wp) + Fg(v, w
o sup (H © 2 gy o) £ T 2>> Y
voowp,wy 2
Proof. Letd := (v, wy)and 3, := (v, w), two pairsin H x H.Then |w; — wy| < [|Sv — w|| + [|Sv —
wall < 2+ ISIHTs(v, wi) + (2 + [ISIHTs (v, wa). O
Lemma 6.3 For every closed linear operator S on H, definable in (H, T o), the following condition holds in
(H, FQ)
sup r2 (Ul + Uz’ w + wz) B (Fs(vl, wy) + Cs(vy, w2)>2 _o.
V1,V2, W2, W3 2 2 2
Proof. Let 0y := (v, w;) and @, := (v2, wy), be two pairs in H x H. Let o] := (v}, /1) and let ¥} :=
(v, w)) be pairs in H x H such that Ts(v}, w}) = Tg(vh, wj) = 0. Then d(2t Ii%) < d0nti)Fd(mn),

Notice that, since v} and v} belong to the domain of S, so does v'zﬂ So,

o5 ) (g
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Now, since S is closed, there exist (0¥ := (v¥, w))ren and (4 := (v, wh))ren, two sequences of pairsin H x H

such that I's (v, wy) = limy_, o d[(v1, wy), (v, w¥)] and Tg(v2, wa) = limg_ 00 d[(v2, w2), (v5, wh)]. Replacing
in previous inequality and taking limits, we get the desired result. (]

The next theorem is an adaptation of one developed by Argoty and Ben Yaacov in [4]:

Theorem 6.4 Let h be a bounded (complex) Borel function on R. Then 'y is definable in (H, T o) if and
onlyifh € C(a(Q),C).

Proof. In this proof, < will denote the usual notion of first order elementary substructure. Also, (ﬁ T Q)
will denote a first order elementary extension of (H, I'g) which is saturated and homogeneous.

“=": Suppose & is a bounded Borel function on R which is not continuous on o (Q) and such that ' (o) is
definable in in (H, I'p). Let Ao € o(Q) be a point of discontinuity of . Let (A )xen be a sequence in o (Q) and
U be an ultrafilter over N such that limy A, = A¢ and such that limy, 2 (X ) exists but limy A(Ag) # h(Ag). There
exist models (Hy, [p,) < (ﬁ, FQ) and v, € H; for k € N such that Hy = g (ve, Avvr) = 0. Let H = Iy Hy
and let v = (v)y € H. Then (vg)y is an eigenvector in H for the eigenvalue A, and we have

h(ho)v = h(Q)(v) = h(Q)(v)u = (A(Q)vi)u = (hvi)u = (lim (i) (vi)u = (imh(hi))v.

So k(o) = limy, h(X;) which is a contradiction.

“<": Suppose h € C(a(Q), C). Then by the Stone-Weierstrass theorem % can be uniformly approximated by a
sequence of polynomials over o (Q). These polynomials are translated into polynomials in Q. Such polynomials
are definable, so h(Q) is definable. O

Lemma 6.5 If 1 € 0(Q), A is isolated if and only if T, (o) is definable in (H,Tg).

Proof. Ifi € 0(Q),then yxy;, is continuous on o (Q) if and only if A is isolated in o (Q). By Theorem 6.4,

'), (o) is definable in (H, I'p) if and only if x;; is continuous on o (Q). O

X0

Lemma 6.6 The following are equivalent:

1. A € 0.(Q) and
2. for every n € N and every bounded Borel function h : R — C such that h is continuous on o (Q) and
h()) # 0, we have that
inf inf  max (K{w; | w;) —&;l, 1R(Q)vi — will) =0 (1)

VIV Uy WL W Wy, j=1,00

holds in (H, Q).

Proof. “(1.)=(2.)”: Suppose A € o.(Q) and let 4 : R — C be a bounded Borel function such that % is
continuous on o (Q) and k(i) # 0. Then there is an open set V C R such that A € V and A does not have
any zero in V. Even more, we can choose /i such that there is an M > 0 such that |h| > M. Since A € 0.(Q),
the space xy(Q)H is infinite dimensional and since & does not have any zero in V, there is a function 2~
which is continuous on V, h7~'h = 1 (in the multiplicative sense) on V and 4~! can be extended contiuously on
R. By the Functional Calculus Form of the Spectral Theorem, h(Q)h~'(Q) = 1d,, (o)n Where Id,, (o)n is the
identity operator on xy (Q)H. This implies that 2(Q) is invertible in xy(Q)H and therefore the dimension of
h(Q)xv(Q)H = h(Q)H is infinite.

On the other hand, by Theorem 6.4, the condition in () can be expressed in continuous first order logic, and
corresponds to the first order sentence:

Jvivy - v dwiws - w, (wilw;) =8 AR(Q)v = w;),

where §;; is Kronecker’s delta. This condition states that 4#(Q)H has dimension greater than n.

“(2.)=(1.)": Suppose that for every n € N, and every bounded Borel function 4 : R — C such that f is
continuous on o (Q) and k()) # 0, we have that (f) holds. Let ¢ > 0 and let %, be a sequence of continuous
functions on R that converge to x(1—e i) By the Functional Calculus Form of the Spectral Theorem, 4, (Q) —
X(—e.4¢)(Q) in the norm. Since h,(Q)H is infinite dimensional for all n € N, (3¢ 1¢)(Q)H is infinite
dimensional. Since ¢ > 0 is arbitrary, by Theorem 2.26, A € c.(Q). O
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Lemma 6.7 If ) is a complex number. Then A € o4(Q) if and only if there exists n € N such that the following
condition exists in continuous first order logic and is true in (H, T'g):
) =0 )

Proof. ByLemma6.5, 1 isisolated in o(Q) if and only if I',, (o) is definable in (H, Q). Then, (}) can be
expressed in continuous first order logic if and only if A is isolated in o (Q). On the other hand, (%) is a continuous
first order condition corresponding to

Juivy - - v, Yw /\(v,|v, </\ QOv; —Av,> Q)w:Z(wh),-)v,- =0.
k=1

i,j

n

X (Qw = > (wlv)v;

inf sup max (|(vi|vj) —38iil, To(vi, Avy),
k=1

VIV U g

where §;; is Kronecker’s delta.

In particular, the statement

m
X (Qw = "(wlvi)v

k=1

means that the vectors vy, - - -, v, generate the eigenspace of A. So the dimension of the eigenspace of X isn. [

Lemma 6.8 If ) is a complex number, then A & o (Q) if and only if for some ¢ > 0 and for some continuous
function f :[0,1] — [0, 1] such that f(0) = 0, the following condition is true in (H,T'g):

supsup ((c[lvll=lwl)=f(To(v, Av + w))) = 0. (#)
Proof. “=”:Suppose A € o(Q). By Fact 2.15 there exists ¢ > 0 such that for every v € D(Q), [|(Q —
AI)v| > c|lv]l. Given r € [0, 1], let f(r) :=sup{c|lv]=|lw|l | To(v,Av +w) =r}. The function f is well
defined, since the set {c[lv|]|—||w] | To(v, Av + w) = r} is bounded in R for all r € [0, 1], and is also continuous
n [0, 1]. Now, f(0) = sup{c|vl|—|lw| | To(v, 2v + w) = 0}; the condition I'p(v, Av + w) = 0 means that
v € D(Q)and Qv = Av + w, which means that w = Qv — Av. So, w = R; v and by Theorem 2.15, ||w|| > c|lw||
thus c|lv||=|lw|| = 0. Therefore f(0) =
“«<=": Suppose now that (#) holds for some ¢ > O and f : [0, 1] — [0, 1] continuous such that f(0) = 0. Then
ifve D(Q)and w :=(Q — Al )v, Tg(v, Av +w) =0andsince f(0) =0, f(Tp(v, Av +w)) = 0. By (#), we
have that c||v||—||w]| = 0 and therefore c||v|| < ||w|| what, by Theorem 2.15, means that A € o(Q). O

The next theorem was remarked by Henson:

Theorem 6.9 Let Q| and Q5 be two closed (unbounded) self adjoint operators on the separable Hilbert space
H. Then the following statements are equivalent:

1. The operators Q| and Q- are approximately unitarily equivalent.
2. The structures (H,Tg,) and (H, T g,) are elementarily equivalent.

3. Q1 ~6 Q1.

Proof. “(1)=(2)”: Suppose that Q| and Q, are approximately unitarily equivalent. Then there exists a
sequence of unitary operators U, on H such that lim, .o, U, QU = Q». Let N be an ultrafilter over N which
contains the filter of cofinite subsets of N. Let (FII, Ty ) = IIn(H, 'y, 0,ur) and let (ﬁz, FQz) =TIIn(H, Tyg,).
It follows that (H, )= (H,, T 5,) and by the Kelsler Shelah Theorem, (H, T'p,) = (H, Tg,).

“(2)=(3)” Suppose (H,T'p,) = (H [p,). Since the relation Q ~, Q, can be written down as sets of
conditions in continuous first order logic (cf. Lemmas 6.6, 6.7 and 6.8), we have that Q| ~, QO».

“(3)=(1)": Suppose now that Q; ~, Q,. Then (H,T'p,) € K(H,ro,)- By Theorem 5.5 and Remark 5.6, 0
and O, are approximately unitarily equivalent. g

Definition 6.10 Let IHS, o) the theory of Hilbert spaces together with the following conditions (1) to (9)
in continuous L,,,. Let A : 6(Q) — C be a continuous bounded function and A € 04(Q), u € 0)e(Q), and
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v € 0(0Q); let g be an arbitrary bounded Borel function g : R — C that is continuous on o (Q) and g(u) #0
(cf. Lemma 6.6) and let ¢, and f, : [0, 1] — [0, 1] be such that they satisfy the hypothesis of Lemma 6.8. We let
n, .= dim X{A}(Q)H

i) (v, wi) + Thio) (v, wy)
(M sup sup (H “2+ Ih(Q)) L =0,
v owp,wr
2
o p (1 (ot ey - (Toloem) £Polnv)))
V1,02, W2, W3 2 2 2
3) supsup(|To (v, w) — Tp(iv,iw)| =0,
4 supsup(|Tp (v, w) — To(—v, —w)| =0,
5) supmax{inf I'g (v, w +iv),inf Ty (v, w —iv)} = 0.
(6) suplnf Fo(v,w)=0
@) vljzl}fv sup max <|(Ui|vj> —8ijl, To(vi, Av;), | Xy (Q)w — Z(w | vi)v; ) =0
now k=1
® inf - nf omax (] wg) = 8l llg(Q)v — will) =
9 sup sup ((cyllv|=llw[)=f(Co(v, vo +w))) =0

Condition (1) expresses the fact that A(Q) is a function (cf. Lemma 6.2); conditions (2), (3), and (4) express
the fact that Q is linear (cf. Lemma 6.3); condition 5 expresses that Q is essentially self-adjoint (cf. Fact 2.14);
condition (6) expresses that D(Q) is dense.

Theorem 6.11 The class Ky r,) is exactly the class of all models of IHS, (o)

Proof. All continuous first order axioms guarantee that all models of IHS, () are spectrally equivalent to
(H,Tp). Condition 5 says that, in each model (H', I"¢/) of IHS; (), the operator Q' is essentially self-adjoint.
The Condition I'yp» = 0 implies that the graph of Q' is closed, so Q is a closed operator. Condition (6) implies

says that in each model of IHS, (o) the domain of the closed unbounded operator is dense in the Hilbert space.
So, all the models of IHS; belong to K(u.r,)- By spectral theory, the converse is true, so both classes are the
same. (]

The theory IHS, () is not a theory in continuous first order logic but in continuous £, logic.

Now, we provide an example of a class K4 r,) that only has one model which clarifies why, in general (4 1)
is not the same as the class of models of Th(H, I'p), the first order theory of (H, I'p). This example is very
similar to the quantum harmonic oscillator:

Example 6.12 Let (Hy, I'p, ) be a separable Hilbert space structure such that o (Qx) = 04(Q) = N and for
every n € N the eigenspace corresponding to n has dimension 1.

Claim 6.13 Let U a non principal ultrafilter over N. Then D([[,, On) is not dense in [ [, Hy.

Proof. Let (v,).cn be a sequence of vectors in Hy such that ||v,|| = 1, v, € D(Qn) and Qv, = nv, for
every n € N. Then (v,)/U & D(]], On). Let (w,)/U be such that ||(v,)/U — (w,)/U|l < €, for some ¢ > 0.
Then limy, ||w, — v,|| < &. That is, for some B € U and for every n € B, |lw, — v,|| < &. Suppose, in addition,
that for every n € B, w, € D(Qy). Let w, = Zk>0 wk , where w* € D(Qy) and Qw* = kw* for k € N. Then,
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0 < Y tennmn 1WA < €2, and [|w] —v,l| < &. If & < L%, then [|Q(w)) || = [1Q(w) — v, + va) | = 1Q(va —

(v = W) = 12(v) = Qv = w) |l = [11Q(vs) = Qv — wi)ll| = |nllvall = §llvall| = 5. So, 1Q(w,)]l =
z.

This means that limy, | Q(w,)| = co. So, (w,)/U & D(]],, On). This way, we have proven that for some
(va)/U € 1, HN\D(] [,; On), there exists an & > 0 such that for every (w,)/U € [],, Hy such that ||(v,)/U —
(wn) /Ul < &, and (w,)/U & D([],, On). This proves that [[,, O is not dense in [[,, Hy. O

Claim 6.14 The tuple ([ [,; Hy, [y, o) does not belong to I g,

’FQN>'
Proof. Claim 6.13 shows that D(]],, Qn) is not dense in [[,, Hy, and then (], Hx, I'fy, 0,;) does not
belong to IC(HN,FQN). O
Claim 6.15 The class K r,) is not, in general, first order axiomatizable.
Proof. The previous theorem shows that /C( . 1 o) 18 not closed under ultrapowers and, therefore, cannot
be first order axiomatizable. ) O

7 Stability

In this section, we prove that the MAEC Ky r,) is superstable by counting types over sets and show that it is
Ro-stable up to perturbations. These are the statements of Theorems 7.7 and 7.9, respectively.

Theorem 7.1 Let v, w € H. Then H, is isometrically isomorphic to a Hilbert subspace of H, if and only if
My K Uy

Proof. By the Radon-Nikodym Theorem, if u, < w, then H, is isometrically equivalent to a Hilbert

subspace of H,,. For the converse, if H, is isometrically equivalent to a Hilbert subspace of H,, then v can be
represented in L*(R, w,,) by some function, and therefore, 11, < fi,. O

Recall that if G € H is small, S(G) denotes the set of Galois types in one variable over G.
Theorem 7.2 Let p,q € S(&) andlet v, w € H such that v = p and w = q, and ju, < jiy. Then, d(p,q) =
”Mw - :uv”~

Proof. If u, < p,, by Theorem 7.1, there exist v’ |= gatp(v/@) such that H,, < H,, and there exists f €
L'(c(Q), itw) such that du, = fdu,. Then d|w, — w,| = |1 — f|d, and therefore d(p, q) < ||ptw — ioll.
Since the d(p, ¢) is the minimum of the distance between realizations of p and ¢, and this minimum occurs when
H, < H,, wehave thatd(p, q) = ||jtw — Mo]l. O

Theorem 7.3 Let p,q € S(D) and let v, w € H be such that v = p and w =g, and p, L . Then,
d(p,q) = VIl 1> + llpew 1.

Proof. If w, L j,, by Theorem 7.1, no Hilbert subspace of H, is isometrically isomorphic to a
Hilbert subspace of H,,. Then we can assume H, L H,, and therefore, d(p, q) = ||[v — w| = /||[v||> + [|lw|?* =

Vol + llw 1. O

Theorem 7.4 Let p, g € S(2) andletv, w € H be such that v = pandw = q,and p, = ;Ll‘l + :Uvi according

to the Lebesgue Decomposition Theorem. Then, d(p, q) = \/Il,uv —ubz+ Il s 112
Proof. By Theorems 7.2 and 7.3. g
Theorem 7.5 Let G C H be small, let p, q € S(G) and let v, w € H be such that u }= p and v |= q. Then,

d(p.q) = /[P(v) — Pa(w)]? + d>(gatp( Pt v/@). gatp( P w/2))

Proof. By Theorem 3.13. 0
Corollary 7.6 Let G € H then dens[S;(G)] < |G| x 2.
Proof. Clear from Theorems 3.13 and 7.5. O
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Theorem 7.7 Ky r,) is k-stable for k > |o].
Proof. Clear from Corollary 7.6. g

Definition 7.8 A MAEC with a system or perturbations (K, <, (IF):>0) is said to be R¢-stable up to the
system of perturbations if for every separable structure M € K there is a separable N’ > M, such that for every
¢ > 0and for every separable structure N’ >, M, there is an e-perturbation f : N’ — A suchthat f[M = Id .

Theorem 7.9 The MAEC Ky r o) s Ro-stable up to the system of perturbations.
Proof. Let(H, Ig,) € K(u.r,) be separable. Let A be a countable dense subset of o (Q). Let

(Hy,Tg,) := (Hp, To,) ® E@(L*(R, 8,), My).

Let (Ha, I'g,) > (Ho, I'g,). Let (H,, I',, ) be the orthogonal complement of (Ho, I'g, ) in (Ha, I'g, ). By Theorem
6.11 (Hi,I'g,) and (H,, I'}),) are approximately uniformly equivalent and therefore there is an e-perturbation
relating (Hy, Igp,) and (H2, Tp,). O

In the previous proof, recall that M, is the multiplication by A.

8 Spectral independence

In this section, we define an independence relation in /(4 1 o) called spectral independence. Theorem 8.6 states
that this relation has the same properties as non-forking for superstable first order theories, while Theorems 8.8
and 8.9 state that this relation characterize non-splitting.

Definition 8.1 Letv,...,v, € Handlet F, G C H. We say that vy, ..., v, are spectrally independent from
G over F if forall i < nPyr)v; = Paci(rug)vi and denote it by vy, ..., v, J/j; G.

Remark 8.2 Let v, w € H. Then v is independent from w over & if and only if ﬁl,e 1 Flwe and denote it
v L w.

Remark 8.3 Let v, w € H. Let G € H be small. Then v is independent from w over G if and only if
HPL (v) 1 HPL[(G)“U) and denote it v \l/z; w.

acl(G)

Remark 84 lLetv € H"and E, F C H. Then v J/E F if and only if forevery j =1, ..., nv; J/’g F that is,
forall j =1,...,nPy(g)(vj) = Pai(eur)(v)).

Theorem 8.5 Let FC G C H,pe S,(F)q € S,(G)andv = (vy,...,v,), w = (vy,...,v,) € H" be such
that p = gatp(v/F) and q = gatp(w/G). Then q is an extension of p such that w | ;. G if and only if the
following conditions hold:

1. Forevery j=1,...,n, Pyr) (vj) = Pac)(w;) and
2. forevery j=1,...,n, Kpd v = /Lpitl(c)wj.

Proof. Clear from Theorem 3.13 and Remark 8.3 O

Theorem 8.6 The relation | * satisfies local character, finite character, transitivity of independence, symmetry,
existence, and stationarity.

Proof. By Remark 8.4, to prove local character, finite character and transitivity it is enough to show them
for the case of a 1-tuple.

Local character. Letv € H and G € H. Let w = (Py(6)(v))e. Then there exist a sequence of (i )xen € N,
a sequence (fF,..., f[/:)keN of finite tuples of bounded Borel funtions of R and a sequence of finite tuples
(ef..... €} Jren € Gsuchthatifw; := l].kzl f;‘(Q)e’j‘. fork € N, then wy, — wwhenk — oo.LetEy = {e’j‘. |j=
1,...,l and k € N}. Then v \L’Zo E and |Ey| = R.
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Finite character. We show thatforv e H, E, F C H,v J/z F if and only if v J/z Fj for every finite Fy C F.
The left to right direction is clear. For right to left, suppose that v [/z F.Letw = Pyi(gur)(v) — Paa(e)(v). Then
w € acl(E U F)\acl(E).

As in the proof of local character, there exist a sequence of pairs (I, ny)ren C N2, a sequence
(gf, . g,’i +,”)ng of finite tuples of bounded Borel functions on R, and a sequence of finite tuples

(e, ... el flo ooy £ ren such that (ef, ... ef ) C E. (ff..... fX ke © F and if wy := Y, g5(0)el +
> g, ;(Q)fF fork €N, then wy — w when k — oo.

If v Lz F, then w = Py(gur)(v) — Paci(e)(v) # 0. For & = |lw|| > O there is k. such that if k > k. then
lw—wi| <e.Let Fy := {fl v Ji kf} Then Fj is a finite subset such that v i Fo.

Transitivity of independence. Letv e Hand EC F CGC H.Ifv |} G then Poi(e)(v) = Paai(g) (v). It is
clear that Pyey(£)(v) = Paci(r)(v) = Paci(c)(v) sov |} Fandv |7 G. Conversely,ifv |} Fandv |} G, we
have that Pacl(E) (U) = Pad(p)(v) and Pacl(F) (v) = Pacl(G) (v) Then Pacl(E) (v) = Pacl(G) (U) and v \LZ G

Symmetry. Symmetry is clear from Remark 8.3.

Invariance. Let U be an automorphismof (H,T'5). Let = (vy, ..., v,),0 = (w1, .. w,) € H"andG C H
be such that v J/Z . By Remark 8.3, this means that forevery j,k = 1,...,nHp: o () J_ HPJ. e ) - Itfollows

acl(
(Uw,) and, again by Remark 8.3, Uv | (U Uw
Existence. Let F € G C H be small sets. We show, by induction on n, that for every p € S, (F ), there exists
q € S,(G) such that ¢ is an | *-independent extension of p.
Case n = 1. Let v € H be such that p = gatp(v/F) and let (H',T'¢') € K(,r,) be a structure containing v
and G. Define

that for every j, k=1, .. anLl [(Uv)) 1 Hp.

ac] UG)

H' :=H & LR, pp:

acl( F)

U)e)’

Q// — Q/ @Mf A
T(Pa(ry e

and

v dcl(F)v+(l) (Ptl(m e
Then (H",Tg) € K(n.ry), v’ € H” and, by Theorem 8.5, the type gatp(v'/G) is a | *-independent extension
of gatp(v/F).

Induction step. Now, let O = (vi, ..., Uy, Uyt1) € H"*!'. By induction hypothesis, there are vi,...,v, € H
such that gatp(v|,...,v,/G) is a | *-independent extension of gatp(vy,...,v,/F). Let U be a monster
model automorphism ﬁxing F pointwise such that for every j =1,...,n, U(v;) = v}. Letv, , € H be such
that gatp(v ;H/Gvi v)) is a | *-independent extension of gatp(U (v,41)/Fv}, ---v,). Then, by transitivity,
gatp(vy, ..., v, ”n+1/G> isa | *-independent extension of gatp(vy, ..., Uy, Vyt1/F).

Stationarzty. Let F € G C H be small sets. We show, by induction on n, that forevery p € S,(F),ifq € S,(G)
isa | *-independent extension of p to G then ¢ = p’, where p’ is the | *-independent extension of p to G built
in the proof of existence.

Casen = 1.Let v € H be such that p = gatp(v/F), and letg € S(G) and w € H be such that w = g. Let v’
be as in previous item. Then, by Theorem 8.5 we have that:

L. Pacl( F)V = Pacl(G)v, = Pacl(G)w
2. He cl(r) Y ’updd ’updt
This means that Py.)v" = Pai(c)w, P gw = HpL v and, therefore ¢ = tp(v'/G) =
Induction step. Let 0= (vi,...,Un, Upg1), 0 = (V],..., ), Un+1) and W = (wy,...,w,) € H be such
that ¥ = p, v = p’ and w |= ¢. By transitivity, we have that gatp(v], ..., v /G) and gatp(wy, ..., w,/G)
are | *-independent extensions of gatp(vi,...,v,/F). By induction hypothesis, gatp(vi,...,v,/G) =
gatp(wy, ..., w,/G). Let U be a monster model automorphism fixing F pointwise such that for every
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j=1...,nU(v)= ; and let U’ a monster model automorphism fixing G pointwise such that for every

j=1,...,nU'(v;) = w,. Again by transitivity,
gatp(U (wy41)/ Gy -+ - vy)

and

gatp(v, /Gy, - - vy)

are | *-independent extensions of gatp(v,+1/Gvy, - - - v,).
By the casen =1,

gatp(U ™" (v;,1)/U ' Goy -+ v,) = gatp((U' 0 U) " (wns1)/U ' Gor, -+ v,)

and therefore

p' = gap(v}, ..., v,v,,/G) = gatp(wi, ..., Wy, Wur1/G) = q.
O
Definition 8.7 Let /C be an homogeneous MAEC with monster model M. Let BC A C M and leta € M.
The type gatp(a/A) is said to split over B if there are b, ¢ € A such that
gatp(b/B) = gatp(c/B)
but

gatp(b/Ba) # gatp(c/Ba)
Theorem 8.8 Ler v € H andlet F € G € H. If gatp(v/ G) splits over F thenv [ % G.

Proof. If gatp(v/G) splits over F, then there are two vectors w 3 and w, € G such that gatp(w 1/F) =

gatp(wy/F) but gatp(w;/Fv) # gatp(w,/Fv). Then, either gatp(P: acl(Fu) w, /D) # gatp( P~ acl(Fo) w2/®) or
Poci(roywr # Pacy( FU) wy. Let us consider each case:

Case I: gatp(P- acl(Fu) w /D) # gatp( P acl(Fu) wz/g). Since
P

acl(Fv) W1 = Pacl(F)wl — Pp w1

1(F) Ve
and

1 _ pl _
PoaroyW2 = P pyw2 PPaﬁl(F) ve W25

this means that
gatp(Ppy o, w1/D) # gatp(Ppy w2/ D)
So, either PPL‘ w1 # Oor PPL(F) e

P, (PaJC-KF)ve) ;é 0, which implies that Pyi(p)v 7 Paci(Fuw,)v- Thatis, v L’; w; and by transitivity, v [/’; G.
Case 2: Pyi( o)W1 7# Paci(rv)w2. Since

wy # 0. Let us suppose without loss of generality that PP_%I( p oW # 0. Then

Pacl(FU)wl = Facl(F)W1 +PPL1(F) W

and

Pacl(Fv) Wy = Pacl( F)yw2 + Pp. 0 W2,

acl( )
this means that PPL”) W1 F PPL‘I( W2 and, therefore either PpL e # 0or PPL ». W2 # 0. As in previous
item, this implies that v f 7. G. U

Theorem 8.9 Let v e H and F € G C H such that F = acl(F) and G is |F|-saturated. If v j’/’; G, then
gatp(v/G) splits over F.

Proof. Ifwv L’; G then w := Pgv — Prv # 0and w L F. Since G is |F|-saturated, there is w’ € G such
that gatp(w/F) = gatp(w’/F) and w’ L Pgv. Since (v | w) # 0, P,w # 0, while P,w’ = 0. O
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Definition 8.10 Lete > 0, v € H and let F, G € H. We say that v is e-spectrally independent from G over
Fif || Pai(ruc)v — Paci(pyvll < € and denote it v \L; G.

Theorem 8.11 The relation | ° satisfies the following properties:
Local character: Letv € H, G € H and ¢ > 0. Then there is a finite Gy € G such that v J/SGO G.
Monotonicity of independence: Letv e Hand D C EC F C G C H. Ifv J/‘j:) G then v \LSE F

Proof. Local character. Let ve H, G C H and & > 0. Let w, (It)reny € N, (e’l‘,...,eﬁ)ng CG,
(flk, e, f/];)keN and wy for k € N be as in the proof of local character of | * in Theorem 8.6. Since w; — w
when k — oo, thereisak; € Z suchthat ||w; — w| < e forallk > ky.LetG, := {elj‘. |j=1,....,kand k < k;}.

Then, v J/ZU G.
Monotonicity of independence. Let ve H and DCECFCGCH and ¢ >0. If v | |G then & >
”Pacl(DUG)v - Pacl(D)v” = ”Pacl(G)U - Pacl(D)U” = ”Pacl(f)v - Pacl(E)v“' Therefore v \J,/i; F. 0

Theorem 8.11 shows that the class /Cp o) is superstable.

Definition 8.12 Let & = (vy,...,v,) € H" and G C H. A canonical base for the type gatp(v/G) is a set
F C Hg which is fixed pointwise by the parallelism class of Morley sequences in gatp(?/G) and such that
v 15G.

Theorem 8.13 Let o = (vy,...,v,) € H" and G C H. Then Cb(gatp(9/G)) := {(Pgv1, ..., Pov,)} is a
canonical base for the type gatp(v/G).

Proof. First of all, we consider the case of a 1-tuple. By Theorem 8.5 gatp(v/G) does not fork over
Cb(gatp(v/G)). Let (vi )< @ Morley sequence for gatp(v/G). We have to show that Pgv € del((vg )k<w)- By
Theorem 8.5, for every k < w there is a vector wy such that vy = Pgv + wy and wy L acl({Pgv} U {w; | j < k}).
This means that for every k < w, wi € H, and for all j, k < w, H,, L H,,. For k < o, let v} := 24 —
Pgv 4 “EF% Then for every k < o, v, € del((vk)k<w). Since v, — P.v when k — oo, we have that Pgv €
dCl((Uk)k<w).

For the case of a general n-tuple, by Remark 8.4, it is enough to repeat previous argument in every component
of D. 0

9 Orthogonality and domination
In this section, we characterize domination, orthogonality of types in terms of absolute continuity and mutual
singularity between spectral measures.
Theorem 9.1 Let p,q € Si(9), letv = p and w |= q. Then, p L q if and only if . L py,.

Proof. p 1°gqifandonlyif ﬁv; L ﬁw; forall v, = p and w, |= g. By Lesbesgue decomposition theorem
o, = “ﬂc + Mﬂ- where, ,uﬂc <& My, and /,Li Ly, ,uﬂc # 0 if and only if there is a choice of v’ = p and w’ = ¢
such that I:Ivé N I:Iwé # {0} and therefore I:Ivé v I:Iwé. O

Corollary 9.2 Let G C H be small. Let p,q € Si(G), let v = p and w = q. Then, p 1% q if and only if
Hpiv, 1 Hpiw,

Proof. Clear from Theorem 9.1. g
Corollary 9.3 Let G C H be small. Let p,q € S1(G). Then, p L° g ifand only if p L q.
Proof. Clear from Corollary 9.2. 0

Theorem 9.4 Let p,q € S1(D), let v = p and w = q. Then, p >4 q if and only if (1, > y,.

Proof. Suppose p >4 ¢. Suppose that v and w are such thatif v | 7 G thenw | 7 G forevery G C H.

Then for every G if I:IUC 1 Hg then ch L Hg. This means ch - I:IUC and I:Iwc is unitarily equivalent to some
Hilbert subspace of H,,, and by Theorem 7.1 p,, < fLy,. 0
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Corollary 9.5 Let E, F, and G be small subsets of H and p € S,(F) and q € S;(G) two stationary types.
Then p t>g q if and only if there exist vw € H such that gatp(v/E) is a non-forking extension of p, gatp(w/E)
is a non-forking extension of q and |4 P v > HPL

Proof. Clear from Theorem 9.4. U
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